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Abstract: Tidal wetland ecosystems and their vegetation communities are broadly controlled by
tidal range and inundation frequency. Sea-level rise combined with episodic flooding events are
causing shifts in thresholds of vegetation species which reconstructs the plant zonation of the coastal
landscape. More frequent inundation events in the upland forest are causing the forest to convert
into tidal marshes, and what is left behind are swaths of dead-standing trees along the marsh–forest
boundary. Upland forest dieback has been well documented in the mid-Atlantic; however, reliable
methods to accurately identify this dieback over large scales are still being developed. Here, we
use multitemporal Lidar and imagery from the National Agricultural Imagery Program to classify
areas of forest loss in the coastal regions of Delaware. We found that 1197 ± 405 hectares of forest
transitioned to non-forest over nine years, and these losses were likely driven by major coastal storms
and severe drought during the study period. In addition, we report decreases in Lidar-derived
canopy height in forest loss areas, suggesting forest structure changes associated with the conversion
from forest to marsh. Our results highlight the potential value of integrating Lidar-derived metrics to
determine specific forest characteristics that may help predict future marsh migration pathways.

Keywords: remote sensing; marsh migration; ghost forest; change detection; Lidar; forest structure

1. Introduction

Coastal wetlands provide crucial ecosystem services, with these landscapes acting as
nekton nurseries, providing wave attenuation, absorbing carbon, and improving water
quality by sequestering and removing excess nutrients [1,2]. Coastal wetlands must ver-
tically gain elevation (sediment accretion) at rates greater than or equal to sea-level rise
(SLR) to resist converting to mudflats or open water. Yet, it is unclear if coastal marshes
will be able to keep up with the current pace of SLR, especially in the mid-Atlantic, where
SLR rates are three to four times higher than global averages [3].

Accelerated SLR threatens coastal landscapes as the vegetation community has varying
tolerances to increased inundation and salinity [4]. The vegetation of the estuarine land-
scape is unique as individual plant species are adapted to live in areas with specific salinity
and moisture regimes controlled by the influx of tides and groundwater [5]. Therefore,
increased inundation and saltwater intrusion from SLR can shift the thresholds of vegeta-
tion species, leading to the reconstruction of plant zonation of the coastal landscape [6–9]
(Figure 1). Marsh vertical accretion rates less than SLR can cause these ecosystems to
convert to open water (i.e., marsh drowning); however, marsh vegetation can migrate
upslope into the upland forest to resist conversion [10–12]. This conversion from upland
forest to tidal marsh is termed “marsh migration” and may offset marsh loss caused by
erosion at the seaward edge [8,9,13].
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Figure 1. Conceptual diagram of the typical wetland zonation (top panel) and ecosystem responses 

to SLR (bottom panel). SLR causes shifts in thresholds of vegetation species, causing reconstruction 

of the plant zonation of the coastal landscape, leading to marsh transgression (diagram modified 

from ian.umces.edu/media-library). 

As the upland forest becomes increasingly exposed to inundation and salinity with 

gradual SLR, changes to the edaphic characteristics inhibit regeneration and ultimately 

lead to mature tree death [9,11,14]. The subsequent and successive forest dieback and the 

lack of regeneration of new trees increase light exposure, allowing salt-tolerant halophytic 

plants to colonize the formerly forested area. As upland forests are converted into a marsh, 

what remains are standing tree snags and stumps surrounded by marsh vegetation often 

termed ‘ghost forests’ [4,12,15].  

Rapid conversion from forest to marsh and the development of ghost forests can also 

occur following an intense storm. Accelerated SLR and coastal storms are inherently 

linked, as storms’ flooding frequency dramatically increases with higher sea levels 

[11,12,16]. Additionally, global warming is likely to intensify and increase the frequency 

of coastal cyclones in the North Atlantic ocean, compounding the effects of SLR-induced 

flooding on coastal landscapes [17]. Strong winds and storm surges produced by coastal 

storms can cause rapid forest dieback. Strong winds damage the physical forest structure, 

leading to canopy defoliation and tree uprooting, whereas prolonged flooding from in-

tensified storm surges starves the soil of oxygen and promotes the activity of sulfide-pro-

ducing bacteria, creating a toxic environment for upland plants [11,18–20]. Additionally, 

increased soil salinity can lead to canopy browning, defoliation, alter freshwater uptake 

by roots, and inhibit forest regeneration [19,21–23]. Forest dieback and lack of forest re-

generation from episodic events can facilitate rapid marsh migration as short-term forest 

recovery may not be possible, leading to the transition from forest to marsh over much 

shorter time scales. Moreover, forest dieback triggered by a strong storm may pave the 
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the effects of gradual SLR, thereby shifting the regeneration niche further inland [9]. 
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Figure 1. Conceptual diagram of the typical wetland zonation (top panel) and ecosystem responses
to SLR (bottom panel). SLR causes shifts in thresholds of vegetation species, causing reconstruction
of the plant zonation of the coastal landscape, leading to marsh transgression (diagram modified
from ian.umces.edu/media-library).

As the upland forest becomes increasingly exposed to inundation and salinity with
gradual SLR, changes to the edaphic characteristics inhibit regeneration and ultimately
lead to mature tree death [9,11,14]. The subsequent and successive forest dieback and the
lack of regeneration of new trees increase light exposure, allowing salt-tolerant halophytic
plants to colonize the formerly forested area. As upland forests are converted into a marsh,
what remains are standing tree snags and stumps surrounded by marsh vegetation often
termed ‘ghost forests’ [4,12,15].

Rapid conversion from forest to marsh and the development of ghost forests can also
occur following an intense storm. Accelerated SLR and coastal storms are inherently linked,
as storms’ flooding frequency dramatically increases with higher sea levels [11,12,16].
Additionally, global warming is likely to intensify and increase the frequency of coastal
cyclones in the North Atlantic ocean, compounding the effects of SLR-induced flooding
on coastal landscapes [17]. Strong winds and storm surges produced by coastal storms
can cause rapid forest dieback. Strong winds damage the physical forest structure, leading
to canopy defoliation and tree uprooting, whereas prolonged flooding from intensified
storm surges starves the soil of oxygen and promotes the activity of sulfide-producing
bacteria, creating a toxic environment for upland plants [11,18–20]. Additionally, increased
soil salinity can lead to canopy browning, defoliation, alter freshwater uptake by roots, and
inhibit forest regeneration [19,21–23]. Forest dieback and lack of forest regeneration from
episodic events can facilitate rapid marsh migration as short-term forest recovery may not
be possible, leading to the transition from forest to marsh over much shorter time scales.
Moreover, forest dieback triggered by a strong storm may pave the way for further upslope
marsh expansion as the forest seedlings may be more sensitive to the effects of gradual
SLR, thereby shifting the regeneration niche further inland [9].

In contrast to the landscape effects of increased tidal flooding, upland environments
can also be converted into marshes from saltwater intrusion into the groundwater. Although
linked with gradual SLR, the result of saltwater intrusion on upland habitats may precede
the effects of increased tidal inundation [24].
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Marsh migration may be the most salient process for estimating future wetland re-
siliency to accelerated SLR and frequency in coastal storms. Recent evidence has suggested
that global wetlands’ resiliency primarily depends on the availability of accommodation
space or adequate lateral space for wetlands to colonize and persist with SLR [25,26]. How-
ever, the timing and process by which the marsh vegetation replaces upland vegetation are
poorly understood, as many factors influence the ability for upslope migration and future
resiliency to SLR (e.g., sediment supply, accretion rates, topography, management, land
use, and hydrology) [11,12,26].

Evidence supports that upland forest dieback driven by accelerated SLR may vary
over spatial scales as specific site conditions could influence various magnitudes of forest
dieback; however, there is limited literature using remote sensing to understand large scale
coastal forest decline and its mirror image–inland marsh migration [3,10,26,27]. Previous
work has focused on measuring upslope marsh expansion and subsequent forest dieback
over time using historical aerial photographs and other optical sensors [4,27–29]. While
this approach helps trace the landward migration of marshes into forests that have been
defoliated, more subtle changes to the forest structure, such as loss in canopy height, could
be early signs of initial marsh expansion before extensive forest dieback occurs.

Forest structure changes can be observed using Lidar remote sensing [30,31]. The
height of the vegetation can act as an indicator for species composition, successional
stage, climate, and land cover classification [30]. Furthermore, the combination of high-
resolution Lidar data and high-resolution aerial imagery may be a powerful tool to classify
and monitor changes associated with marsh migration [32]. This combination results in
better classification accuracy than with imagery alone [32]. For example, Smart et al. [3]
used multitemporal Lidar and spectral indices derived from Landsat to map ghost forests
along the Albemarle-Pamlico Peninsula in North Carolina; however, the multi-temporal
Lidar was resampled to match the resolution associated with Landsat (30-m). This coarser
resolution may miss areas experiencing initial dieback along the upland-marsh boundary,
especially in areas where the widths of forests adjacent to tidal wetlands are thin. Thus,
there is considerable interest in exploring the potential of high-resolution Lidar and imagery
toward detecting changes in forest structure as an indicator for future marsh migration.

In this paper, we quantify recent coastal forest loss between 2007 to 2015 in the coastal
areas in Delaware using multi-temporal high-resolution imagery from the National Agri-
culture Imagery Program (NAIP) and publicly available airborne Lidar. The remainder of
this paper is as follows: we first discuss the data and methodology used for the change
detection, then report the area of recent forest loss and investigate larger landscape pat-
terns and potential predictors for forest loss within the local 12-Hydrologic Unit Code
(HUC-12) watersheds. We further explore the utility of airborne Lidar to observe changes
to canopy height that may be associated with forest structure changes ensued by marsh
migration. Finally, we discuss relevant environmental drivers that may have induced the
rapid conversion of forest to marsh over this sub-decadal timespan.

2. Materials and Methods
2.1. Study Area

Areas along Delaware Bay are some of the lowest-lying areas in the US and thus
are at risk for SLR-induced flooding impacts. The vegetation along Delaware Bay is
adapted to a range of salinities, including tidal freshwater, brackish, and salt marshes. The
different wetland types are associated with slight differences in elevation and the flooding
regime [21]. The coastal areas of New Castle and Kent Counties in Delaware are the main
focus areas for our study (Figure 2).
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Figure 2. Map of the study area, coastal areas of New Castle and Kent Counties Delaware.

In Delaware Bay, Spartina alterniflora (Smooth Cordgrass) occurs at the estuary’s lowest
elevations, where tidal-driven saltwater flooding occurs twice daily. Vegetation in higher
elevations that are inundated only during spring tides is comprised of a mix of grasses,
including Spartina patens (Salt Hay), Distichlis spicata (Desert Saltgrass), and Juncus gerardii
(Blackgrass). The upland edge, where inundation is increasingly occurring with SLR, is
commonly colonized by Phragmites australis, marsh elder (Iva frutenscens), and eastern red
cedar (Juniperus virginiana) [33].

The upland forests in the study area are comprised of deciduous hardwoods and
evergreens, where forest composition shifts as the soil saturation increases [33,34]. Drier
upland forests consist of several Oaks (e.g., white (Quercus alba), southern red (Q. falcata),
scarlet (Q. coccinea), black (Q. velutina)) and Pines (e.g., pitch (Pinus rigida), loblolly (P.
taeda), and Virginia (P. virginiana) and shortleaf (P. echinata)) [33,34]. In areas with higher
soil saturation, the forest tends to be made up of red maple (Acer rubrum), black gum
(Nyssa sylvatica), American Holly (Ilex opaca), and Atlantic White Cedar (Chamaecyparis
thyoides) [33,34].
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Our study areas were classified as ‘estuarine and marine wetlands’, ‘freshwater emer-
gent wetlands’ and ‘freshwater forested/shrub wetlands’, identified by the 2020 National
Wetland Inventory (NWI). We also included the adjacent forest within 75 m of wetland
areas as we are interested in the upslope retreat of the forest further inland, and these
extents may not be classified as freshwater forested/shrub wetlands by the NWI [35].

2.2. Remote Sensing Data
2.2.1. Airborne Lidar Data

The raw point clouds for each year were downloaded from the NOAA Digital Coast
Data viewer [35]. All Lidar processing was performed using the lidR package [36] in the R
computing environment (R Core Team 2020, Vienna, Austria). The 2014 Lidar acquisition
had an average point density of 4.1 points/m2, while the 2007 acquisition had an average
point density of 1.3 points/m2 (Table 1). To allow for proper comparison between the two
Lidar acquisitions, the point densities for the two acquisitions were reduced to 1 point/m2

using the lasfilterdeciminate function in the lidR package, which randomly removes a given
proportion of points to achieve a specific point density [36,37]. After attaining the proper
point density, the point clouds were filtered of noise and duplicate points and then normal-
ized into height above the ground or a normalized Digital Surface Model (nDSM) with a
2-m horizontal resolution using linear interpolation. A 2-m digital elevation model (DEM)
was also generated with ground points using Delaunay triangulation. Using the local
maximum of the nDSM, we determined the height of the canopy and derived a 2-m resolu-
tion canopy height model (CHM). Additionally, the standard deviation of the normalized
heights within a 2-m cell was generated and gridded into a raster.

Table 1. Airborne LiDAR flight acquisition details for 2007 and 2014, acquired from the Sanborn Map
Company, Inc and NOAA National Geodetic Survey, respectively.

Year Instrument Flight Altitude
(m AGL) Scan Frequency (Hz) Pulse Rate (kHz) Scan Angle Point Density

(Points/m2)

2007 Leica Systems
ALS-50 1400 32 50 20 4.1

2014 Leica Systems
ALS-70 1676 31.7 165 17 1.3

2.2.2. NAIP Imagery

The NAIP imagery was acquired and mosaicked as one single image for each county
for each year [38]. Leaf on, 1-m resolution 4-band NAIP imagery was only available for 2009
and 2015. Despite the temporal mismatch of the Lidar and NAIP imagery acquisitions, we
do not expect high temporal discrepancies as there were no instances of fire or severe storms
that would produce major height changes between 2007–2009 and 2014–2015 [39]. The
composites of the NAIP imagery included the visible spectrum (red, green, blue, RGB) and
the near-infrared (NIR) band. From the imagery composite, we calculated the normalized
difference vegetation index (NDVI).

Additionally, a Principal Component Analysis (PCA) was carried out on the NAIP to
minimize spectral redundancy. The NAIP imagery was resampled to 2-m resolution by
nearest-neighbor interpolation in ArcGIS 10.6 software to match the derived Lidar gridded
products. Finally, the resampled NAIP imagery and PCA layers were clipped to the tidal
wetlands and adjacent forest areas.

2.3. Random Forest Classification

We used the randomForest [40] and caret [41] packages in R statistical software (RStu-
dio, Inc. Boston, MA, USA, v1.3.1073). Tuning in caret was applied using the tuneRF
function to determine the hyperparameters for the RF classifier. Once these were found, we
used 10-fold cross-validation and three repeats to limit and reduce overfitting [42].
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The training dataset for the RF was derived from the raw high-resolution (1-m) leaf-on
NAIP imagery. We manually classified 1500 points as ‘forest’ or ‘non-forest’ using expert
knowledge, of which, 80% were used for training and 20% were withheld for testing [42].
Forest areas were identified when a canopy was present, while non-forest points were
identified when no canopy was present. Non-forest points were dominated by marsh
grasses, bare ground, and open water but because we focused on changes to the forest
from recent marsh migration, classifying other vegetation zones within the ‘non-forest’
was not a priority as wetland vegetation zones are highly heterogeneous and subject to
misclassification from visual interpretation.

Once the best parameters for the RF classifier were found, the model was evaluated
against the test data, and model accuracy was assessed using the built-in random forest
confusion matrix function. Additionally, variable importance was analyzed using the Mean
Decrease in Accuracy (MDA) [43]. The MDA compares the Out-of-Bag (OOB) error through
random permutations of the values of different variables and the OOB error from the
original data set [43]. More simply, the MDA is the decrease in prediction accuracy relative
to the original model when a variable is removed.

Once the random forest classifier was appropriately trained and tuned, it was applied
to each year’s stacked Lidar and NAIP imagery. For simplification, the resulting forest/non-
forest map classified with the 2007 Lidar/2009 NAIP imagery is referred to as the 2009
forest/non-forest classification map, whereas the resulting forest/non-forest map classified
with the 2014 Lidar and 2015 NAIP imagery is referred to as the 2015 forest/non-forest
classification map.

2.4. Change Map and Accuracy Assessment

Although the accuracies of classifications from the two dates may be high, the de-
rived change map can be inaccurate, and the area computed by the change map may be
biased [40], as traditional pixel counting can be unreliable in calculating the actual pro-
portion of classified areas [44,45]. Using a sample-based estimator to assess the accuracy
of the change map, we can avoid the measurement bias of pixel counting and decrease
the standard error of the area estimate [44]. The stratified estimator method is viewed
as an “error-adjusted” estimation of the area because it includes the erroneous map area
associated with the omission error and omits the area related to the commission error [44].

The equations detailed in Olofsson et al. [44] were used to determine the estimated
error with each from-to transition with the associated 95% confidence interval. The sam-
ples used for the accuracy assessment of the change map were independent of the train-
ing dataset used in the RF classification. The reference land cover of each sample was
determined using the raw high-resolution NAIP imagery (1-m). The error matrix con-
sisted of sample counts with map categories as rows and reference categories as columns.
Class 1 was no change to non-forest (non-forest stable), class 2 was forest to non-forest
(forest loss), class 3 was non-forest to forest (forest growth), and class 4 was no change
to forest (stable forest). User’s, Producer’s, and overall accuracy were calculated based
on the error matrix. In addition, the change classes’ area was updated with the accuracy
assessment findings using the stratified estimation method [44,46].

2.5. Landscape Change Analysis

Forest to non-forest vegetation transition areas were tabulated for the study area’s
HUC-12 watersheds to investigate larger landscape patterns in upland forest loss and to
analyze the predictive power of hydrologic connectivity and elevation to explain increased
forest losses. The tabulated area of the forest losses was normalized by dividing by the
classified forest area in the 2009 forest map in each HUC to account for differences in
forest extents.

Drainage maps were derived from the United States Geologic Survey (USGS) National
Hydrography Dataset (NHD) downloaded from Delaware First Map [47]. We calculated
the drainage density of each subregion following the methods of White et al. [27] by
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dividing the total length of the drainage features (artificial, canal/ditch, river/stream) by
the total subregion area. These hydrologic features included river channels, tidal creeks,
and artificial ditches. Additionally, the average elevation of each HUC was derived from
the 2014 digital elevation model. Finally, Spearman correlation compared drainage density
and average elevation to the normalized tabulated area of forest to non-forest.

We extracted the canopy height (greater than 1 m) and ground elevation from the 2007
and 2014 Lidar in areas with classified forest loss, forest growth, and stable forest to explore
whether the canopy height and elevation change were directionality positive or negative
between the change classes. Additionally, a height transition matrix was constructed to
determine the probability of height changes over seven years [48,49]. Height transition
matrices characterize forest dynamics and incorporate growth and lateral filling, death
and branch loss [48]. For this matrix, all canopy heights were binned into 2-m vertical
intervals but were limited to forested areas identified by NWI and the Delaware Canopy
Cover map [50]. The matrix columns report the likelihood of a height transitioning from a
2007 height class to a 2014 height class while reading across the rows gives a chance that
the observed height in 2014 originated from the height class in 2007 [48,49].

3. Results
3.1. Classification and Change Map Results

The RF classifiers performed with high accuracies, and the Lidar-derived metrics
slightly enhanced classification accuracy compared to using imagery alone. The overall
accuracy of the two forest/non-forest classification maps for 2009/2015 was 93% and 91%,
respectively, whereas, without the Lidar metrics, accuracy was 87% and 86%. The change
map produced by the post-classification comparison of the 2009 and 2015 forest/non-forest
classification maps had an overall accuracy of 91% (Figure 3a) (Table 2).
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Table 2. Accuracy assessment of the change map error matrix. Class 1 is no change to non-forest
areas, class 2 is forest to non-forest transition, class 3 is non-forest to forest transition, and class 4 is no
change to forest areas. Wi is the proportion of the area that is mapped to a specific class divided by
the total mapped area. Map categories are the rows, while reference categories are the columns.

Class 1 2 3 4 Total Map Area (ha) Wi Users Producers Overall

1 193 2 1 4 200 19,098 0.58 0.97 0.95 0.91
2 45 98 0 57 200 1216 0.04 0.49 0.50
3 107 3 9 81 200 1149 0.04 0.05 0.35
4 3 7 0 190 200 11,252 0.34 0.95 0.90

Total 348 110 10 332 800 32,715

A major research objective of this study was to quantify upland forest dieback that
may be associated with recent routes of marsh migration; therefore, the accuracy of the
transition from forest to non-forest is of particular interest. Using the pixel count method,
the area calculated from the change map for the forest to non-forest transition (forest loss)
was 1217 ha.

This area falls within the 95% confidence interval of the error-adjusted estimated area
(1197 ± 405 ha). This error-adjusted area is less than the pixel count, as the commission
error was prominent in the change accuracy assessment (Table 3) [44].

Table 3. Land transition area (hectares) for each change class using the pixel count and error-adjusted
area methods. The equations detailed in Olofsson et al. [42] were used to determine the estimated
error with each from–to transition with the associated 95% confidence interval.

Area Calculation Method
Land Transition (ha)

Non-Forest Remain Forest to Non-Forest Non-Forest to Forest Forest Remain

Pixel count 19,098 1217 1149 11,252

Error adjusted area 19,486 ± 708 1197 ± 405 147 ± 32 11,882 ± 806

The area of the non-forest to forest (forest growth) change class derived by pixel count
was well outside the bounds of the error-adjusted area (147 ± 32 ha). Errors of commission
dominated this change class, which reflects the reduced area. The areas calculated by pixel
count for the stable change classes (no change to forest, no change to non-forest) were
within the error-adjusted area confidence intervals (Table 3).

We found that approximately 4.1% of the total classified area transitioned to a new
vegetation class during the study period. However, the non-forest to forest transition
(forest-growth) class was prone to commission errors. This may be due to the classifier’s
confusion with the heterogeneous wetland vegetation along the upland-marsh transitional
ecotone, which we will discuss later.

3.2. Landscape Change Analysis

The normalized area of forest loss within each HUC-12 subregion was not associated
with any specific spatial gradient, but higher percentages of losses were concentrated
further south in the estuary (Figure 3b). The Upper Saint Jones River subregion accounts
for the highest rates of forest losses, accounting for 26% of the forest classified in the 2009
forest map, which converted to non-forest.

Drainage density was somewhat correlated (R = −0.37, p = 0.049) with the percentage
of forest loss in each HUC-12 subregion. Our analysis suggests that watersheds with higher
drainage densities are less likely to experience forest dieback than subregions with lower
drainage densities (Figure 4). We did not find a significant relationship between mean
elevation and tabulated forest loss.



Remote Sens. 2022, 14, 4577 9 of 18

Remote Sens. 2022, 14, 4577 9 of 18 
 

 

confusion with the heterogeneous wetland vegetation along the upland-marsh transi-

tional ecotone, which we will discuss later.  

3.2. Landscape Change Analysis 

The normalized area of forest loss within each HUC-12 subregion was not associated 

with any specific spatial gradient, but higher percentages of losses were concentrated fur-

ther south in the estuary (Figure 3b). The Upper Saint Jones River subregion accounts for 

the highest rates of forest losses, accounting for 26% of the forest classified in the 2009 

forest map, which converted to non-forest. 

Drainage density was somewhat correlated (R = −0.37, p = 0.049) with the percentage 

of forest loss in each HUC-12 subregion. Our analysis suggests that watersheds with 

higher drainage densities are less likely to experience forest dieback than subregions with 

lower drainage densities (Figure 4). We did not find a significant relationship between 

mean elevation and tabulated forest loss.  

 
Figure 4. Spearman correlation of percentage of forest loss per HUC (%) and drainage density. 

The canopy height in areas that transitioned from forest to non-forest decreased from 

2007 to 2014 (Figure 5). In 2007, the mean canopy height in areas with forest loss was 11.97 

± 6.50 (SD) meters, whereas, in 2014, the canopy height was 10.79 ± 7.24, identifying overall 

reductions in tree height during the study period (Table 4). In contrast, in areas classified 

as forest remaining (forest stable) and forest growth (non-forest to forest), canopy heights 

increased from 2007 to 2014. In areas with stable forests (no change to forest), the mean 

canopy height in 2007 was 16.89 ± 6.91 m and 17.81 ± 7.08 m in 2014. In areas classified 

with forest growth, the mean canopy height was 7.59 ± 6.15 m in 2007 and 9.73 ± 5.91 in 

2014 (Table 4).  
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The canopy height in areas that transitioned from forest to non-forest decreased from
2007 to 2014 (Figure 5). In 2007, the mean canopy height in areas with forest loss was
11.97 ± 6.50 (SD) meters, whereas, in 2014, the canopy height was 10.79 ± 7.24, identifying
overall reductions in tree height during the study period (Table 4). In contrast, in areas
classified as forest remaining (forest stable) and forest growth (non-forest to forest), canopy
heights increased from 2007 to 2014. In areas with stable forests (no change to forest), the
mean canopy height in 2007 was 16.89 ± 6.91 m and 17.81 ± 7.08 m in 2014. In areas
classified with forest growth, the mean canopy height was 7.59 ± 6.15 m in 2007 and
9.73 ± 5.91 in 2014 (Table 4).

Table 4. Summary statistics of multi-temporal canopy height and ground elevation among the
change classes.

2007 Canopy Height (m) 2014 Canopy Height (m)

Mean Median sd Mean Median sd n

Forest loss 11.97 11.40 6.50 10.79 9.57 7.24 1,496,807
Forest remain 16.89 17.26 6.91 17.81 18.28 7.08 25,653,049
Forest growth 7.59 5.43 6.15 9.73 8.61 5.91 674,500

2007 Ground Elevation (m) 2014 Ground Elevation (m)

Mean Median sd Mean Median sd n

Forest loss 2.99 1.31 3.92 2.96 1.28 3.91 1,496,807
Forest remain 6.29 4.49 5.44 6.29 4.51 5.43 25,653,049
Forest growth 3.19 1.09 4.93 3.17 1.10 4.90 674,500
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Figure 5. Comparison of canopy height from 2007 and 2014 across the forest transition classes.

Ground elevations varied across the forest transition classes and appeared to be lowest
in forest loss areas compared to stable forest and growth areas. Overall, ground elevation
appeared to remain stable within the change classes, with slight decreases from 2007 to 2014
in areas of forest loss, which may have resulted from the subsequent subsidence following
forest dieback due to marsh migration (Figure 6).

Generally, the diagonal of the transition matrix follows an increasing trend following
the 8–10 m height class, indicating that the taller canopy heights in 2007 were less likely
to transition to a new height class (Table 5). On the other hand, heights in-between 2 and
8 m display an overall decreasing trend in the diagonal, identifying increased chances to
transition into new height classes. These transition likelihoods for heights between 2 and
8 m are weighted toward height gains compared to losses. However, these gains do not
necessarily require that the vertical growth of the canopy grows but can also occur as
adjacent canopy gaps and overhead are latterly filled. These transition probabilities are
consistent with the average canopy heights in upland dieback and stable forest areas, where
we see higher probabilities of transitioning to a new height class when heights are lower
than 12 m and greater chances of height stability in regions with taller canopy heights
(Table 4).

Our data show conversion probabilities to the shortest height class (<2 m) in 2014
from taller height classes in 2007 across all the classes (including tallest) (see the first row of
Table 5), demonstrating cases of tree mortality for all height classes over the seven years.
This transition accounts for almost ~7% of the total Lidar footprints, suggesting widespread
height loss. These losses may not be the overall vertical tree height reduction but rather
enough branch death to produce a gap that extends through the canopy and remains in
2014. We speculate that these canopy gaps may represent the widespread thinning of the
forest canopy due to edaphic stress related to prolonged inundation events.



Remote Sens. 2022, 14, 4577 11 of 18

Table 5. Matrix of height transitions from 2007 to 2014.

2007 Height

2014 Height <2 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 20–22 22–24 24–26 26–28 28–30 30–32 32–34 34–36 >36 N

<2 0.37 0.16 0.13 0.12 0.10 0.09 0.08 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.08 0.08 4344354
2–4 0.15 0.20 0.08 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1635554
4–6 0.13 0.20 0.17 0.07 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1710029
6–8 0.10 0.15 0.19 0.17 0.07 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1840462

8–10 0.07 0.11 0.16 0.20 0.17 0.07 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 2050641
10–12 0.05 0.07 0.11 0.16 0.21 0.18 0.07 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 2311029
12–14 0.03 0.04 0.06 0.11 0.16 0.22 0.19 0.07 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 2580172
14–16 0.03 0.02 0.03 0.05 0.09 0.16 0.24 0.21 0.08 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 2828951
16–18 0.02 0.02 0.02 0.03 0.05 0.09 0.16 0.25 0.22 0.08 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 3037465
18–20 0.02 0.01 0.02 0.02 0.03 0.04 0.08 0.16 0.27 0.23 0.08 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.00 3180714
20–22 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.07 0.15 0.29 0.25 0.09 0.04 0.03 0.02 0.02 0.01 0.01 0.01 3197649
22–24 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.06 0.14 0.30 0.27 0.09 0.05 0.03 0.02 0.02 0.01 0.01 3008949
24–26 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.13 0.31 0.29 0.10 0.05 0.03 0.02 0.02 0.01 2522858
26–28 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.11 0.32 0.30 0.10 0.05 0.04 0.03 0.02 1782928
28–30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.08 0.30 0.30 0.11 0.06 0.04 0.03 1024994
30–32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.28 0.29 0.11 0.06 0.05 495490
32–34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.26 0.28 0.12 0.07 221965
34–36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.25 0.28 0.12 95760
>36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.28 0.55 47794

n 4641644 1272584 1570363 1922163 2279418 2605791 2892009 3114392 3276134 3341441 3238901 2873505 2198716 1374145 723786 343563 157760 65240 26203 37917758
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4. Discussion

Between 2007 and 2015, we quantified widespread forest loss along two coastal coun-
ties in Delaware. Forest losses were concentrated in the Delaware Bay estuary’s southern,
more coastal watersheds and negatively correlated with watershed drainage density. Over
this short time, the forest loss is consistent with rapid marsh migration, likely driven by
a series of episodic events exacerbated by climate change and gradual sea-level rise. In
the following discussion, we provide further insight into the results and limitations of
this study.

4.1. Classification and Change Map

Coastal ecosystems are challenging to monitor using remote sensing as they are
highly dynamic and heterogeneous landscapes. However, the increased availability of data
with high spatial and temporal resolution coupled with machine learning classification
algorithms could assist in monitoring coastal ecosystem change. This study is one of the few
that quantify recent upland forest loss due to marsh migration in Delaware Bay using high-
resolution Lidar and imagery. Our classification and subsequent post-classification analysis
mapped recent forest loss likely due to marsh migration. Although the user accuracy of
forest loss derived from the change map was relatively inaccurate (~49%), the estimated
area was “error-adjusted” to reflect the classification error within a confidence interval.
While this method is considered a best practice for quantifying post-classification accuracy,
many studies leave out the erroneous area attributed to classification error. Overlooking
these errors could lead to dramatic differences in numerical models that utilize land change
estimates (e.g., carbon flux, carbon storage, biomass loss) [44].

The classification errors accompanying forest change (i.e., forest loss, forest growth)
may be attributable to the species composition in the ecotone between the upland forest
and the marsh platform. This ecotone is primarily compromised of P. australis. These
invasive reeds are tall, typically between 2 to 5 m, have a high NDVI value, and are
known to colonize rapidly, which we speculate may be easily misclassified as forest in 2009
or 2015 forest/non-forest maps, leading to the errors in the mapping of forest loss and
forest growth. The sources of misclassification would be better interpreted with ground
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truth landcover reference data. However, ground-truth samples were not available for the
periods of our study.

4.2. Landscape Change Analysis

We found that watersheds with higher drainage densities are less likely to experience
forest dieback than subregions with lower drainage densities. We were surprised by
the negative drainage density coefficient, but this finding is consistent with the results
by White et al. (2021), which also found a significant negative coefficient for drainage
density when evaluating the predictive power for freshwater forested wetland loss in
HUC-4 subregions in the North American coastal plain. While other work has shown that
increased connectivity to saline water bodies can drive the salinization and subsequent
deforestation of freshwater habitats [27,51,52], we suspect that improper drainage from
historic tidal impoundments in our study area may be contributing to upland dieback
compared to other regions that may have better drainage networks.

The current tidal impoundments in Delaware serve as a habitat for waterfowl and
recreational areas. Yet, these impoundments may have been breached during intense
storms, contributing to the rapid conversion from forest to marsh. Inundation from storm
surges in impounded areas may not be able to recede as fast as areas that have tidal access,
leading to more significant forest dieback [53]. More research is needed to address how
historic and current management of these impoundments will affect future marsh migration
routes [53].

Ground elevation is a principal determinant of the forest–marsh boundary and its
movement with SLR [52,53]. Although we did not find average watershed elevation to be
a significant predictor of increased forest loss, we found that ground elevation decreased
in areas that experienced forest dieback from 2007 to 2014, suggesting that pulses of
inundation from episodic events may be causing root breakdown and ground subsidence,
reflected in overall lower ground elevations. This finding agrees with much of the marsh
migration literature, which suggests that trees in lower elevations are likely to be converted
to marsh first, whereas trees in higher elevations may be able to persist as higher elevations
limit the reaches of inundation [7,11,52,54,55].

Increased inundation inland, whether from gradual SLR or episodic events, changes
the ecosystem function of forested habitats, which may manifest in vertical forest struc-
ture changes. Forest height and the variability in height may provide early evidence of
forest seral stage or disturbance to the vegetation [30,56]. Our results show that average
canopy height decreased in areas of forest loss over our study period, whereas in regions
classified as stable forest and growth, canopy height increased, highlighting the potential
of Lidar to provide important information on structural changes attributed to forest retreat
before mortality.

Additionally, we can explore particular forest characteristics that may be more sus-
ceptible or resilient to marsh migration using data from Lidar. For example, we found
that, on average, taller trees (>16 m) do not experience as much dieback as trees that are
shorter (<12 m). We speculate that taller forests with more established root systems may
allow for enhanced resiliency as deeper roots may access the fresh groundwater from
deeper depths [57]. In contrast, shorter forest stands with shallower root systems may be
more susceptible to salt stress due to increased exposure to tidal inundation or saltwater
intrusion in the groundwater. Our findings are supported by Krauss et al. 2009 [58], who
found reductions in freshwater forest height and basal area of areas impacted by saltwater
intrusion. Further research is required to determine forest resiliency in response to episodic
events of inundation and increased saltwater intrusion.

We also characterized canopy dynamics using a height transition matrix, and while
we found that taller height classes tended to remain stable, we identified that all height
classes had at least a 7% chance of converting to the shortest height class (< 2 m), indicating
a possible disturbance that affected all height classes. This perturbation may have resulted



Remote Sens. 2022, 14, 4577 14 of 18

from prolonged edaphic stress on the forest, which could have resulted in widespread
canopy thinning consistent with the effects of marsh migration.

Our transition matrix displays a mortality rate (inferred by height losses) of ~1%
per year, which is consistent with estimations of mortality from the United States Forest
Service (USFS) of approximately 1–2% [59]. However, the USFS rate includes mortality by
harvesting and it is unclear how this mortality rate may extend to coastal forest dieback
associated with the effects of accelerated SLR [60].

While Lidar can be a powerful tool to map canopy height over broad scales, validating
Lidar-derived height changes can be challenging. Both Lidar acquisitions had a vertical
accuracy within 18.5 cm, as defined by the National Digital Elevation Program (NDEP) [61],
but we did not have any field height measurements to validate Lidar-derived height
changes during our study period. Additionally, the Lidar used for our analysis had low
point densities, which could have led to height errors due to points not reaching the ground.
Therefore, future efforts should use higher point density Lidar to monitor structural changes
through time.

We suspect that regime shifts in the understory could have occurred during our study
period (invisible migration, [62]); however, we did not quantify changes to vegetation
under the canopy. Additionally, changes to the forest composition, namely, invasions of P.
australis, could be early signals of marsh migration as P. australis is often the first to colonize
and can colonize in the understory [8]. As such, future studies using higher resolution Lidar
may assist in detecting changes to the understory that are typically limited by canopy cover.

4.3. Drivers for Forest Loss–Episodic Events

The timing and spatial distribution of forest dieback within the estuary suggest that
forest mortality reflects the effects of rapid marsh migration following a series of episodic
events. Sea level increased by approximately 2.5 cm over our study period (9 years), which
is lower than the present rate of SLR (3.76 ± 0.43 mm/year, [63]), leading us to investigate
additional drivers that may have caused rapid rates of marsh migration [63].

Over our study period, there were four major coastal storms, here defined as tropical
cyclones that were within 30 km of the Delaware coast, categorized based on the Saffir-
Simpson Hurricane Wind Scale (i.e., Tropical storm Hanna, 2011; Hurricane Irene, 2011;
Hurricane Sandy, 2012; Tropical storm Andrea, 2013). Each of these storms could have
caused prolonged flooding, windthrow, and saltwater intrusion to the groundwater, all of
which may have contributed to the forest mortality (Table 6) [64]. These hydrologically
connected areas are low-lying with shallow groundwater depths, making them, particularly
at risk for saltwater intrusion [52,65].

Table 6. List of the major storms that occurred near our study area between 2007 and 2015 with their
associated wind speed and category when the storm made landfall.

Hurricane Name Date Landfall Wind
Speed (Knots) Category (during Landfall)

Hanna September 2008 45 Tropical storm

Irene August 2011 65 Category 1 hurricane

Sandy October 2012 70 Category 1 hurricane

Andrea June 2013 45 Tropical storm

Another consideration to be investigated is the effect of drought on coastal tree mor-
tality. Drought conditions can intensify the impacts of the gradual sea-level rise as the
availability of fresh groundwater in areas with active marsh transgression is essential
for forest stands to cope with salinity pulses [7,24,54,65]. However, if fresh groundwater
is limited (e.g., drought-induced), salt-stressed forested regions will begin to convert to
marsh [58]. Additionally, severe droughts can cause increased saltwater intrusion into the
groundwater because the lack of precipitation allows the salt pulse from the tides to persist,
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whereas, with regular rainfall events, those salt pulses associated with the tides tend to get
diluted [24]. During prolonged drought events, especially during the growing season when
temperatures are hot and evapotranspiration by the vegetation is highest, groundwater can
become hypersaline and result in pulses of tree mortality [54].

A considerable drought occurred in the mid-Atlantic in the summer of 2011. The
Palmer Drought Severity Index (PDSI) for the study area indicated extreme drought con-
ditions with values between −4.0 to −4.70 during the growing season [66]. We suggest
that this severe drought, followed by Hurricane Irene in 2011, with almost a direct hit on
the Delaware coast, could have been the main driver for the forest loss and subsequent
shift in habitat ranges during our study period. This finding is consistent with previ-
ous work during the same time interval in the Chesapeake Bay and Albemarle-Pamlico
Estuaries [7,65].

5. Conclusions and Future Directions

This study used publicly available Lidar and NAIP imagery fusion to detect forest
losses related to recent marsh migration in two counties along the Delaware Bay Estuary.
Although our analysis showed changes in canopy height, our Lidar point density was
low, and future efforts to monitor structural changes through time should use the highest
point density that is practical and affordable. With state and federal funding for routine
airborne Lidar data acquisitions becoming more common, Lidar can be a powerful tool for
natural resource managers to map potential marsh conservation corridors as the effects
of accelerated sea-level rise persist. In addition, Lidar has the ability to map the upland
vegetation’s three-dimensional vertical structure, which may enable early detection of
initial landscape-level changes associated with sea-level rise and coastal storms ahead of
widespread forest dieback.

As policy moves toward expanding coastal wetland restoration to carbon markets
and state climate action plans, we first need to determine if, where, and how tidal marshes
are expanding into the upland forest to cope with accelerated SLR. Efforts to map marsh
migration and upland forest retreat need to consider the effects of SLR while also accounting
for extreme events (i.e., hurricanes, drought) as they are inherently linked to global climate
change and, as we have shown in this study, may result in rapid marsh migration and
extensive forest dieback on sub-decadal timescales.
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